Epithelial TNFR2 signaling in the setting of IBD may be involved in the development of colitis-associated carcinogenesis

Taro Watabe, Takashi Nagashi, Masahiro Suzuki, Motomi Yamazaki, Michio Onizawa, Jose Nisha, Arisa Tokai, Akinori Hosoya, Risa Kawai, Mamoru Totsuka, Mamoru Watanabe

Department of Gastroenterology, Tokyo Medical and Dental University, Department of OB/GY, Nihon University, Department of Applied Biological Chemistry, The University of Tokyo

Abstract

We have previously reported that NF-kB activation in association with specific up-regulation of TNFR2 was observed in the intestinal epithelial cells of mice suffering from adenoma associated carcinogenesis (AAC). It has been shown that prolonged inflammatory bowel diseases (IBD) may promote carcinogenesis in the epithelial, but the role of TNFR expression in the setting of AAC has not been elucidated.

Aim and Methods:

The aim of this study was to analyze TNFR2 signaling in the colonic epithelial cells in the setting of IBD. A mouse colorectal adenoma model, AAC, was established by the injection of intestinal colon adenoma cells from male mice (RA10) and administration with dextran sodium sulfate (DSS). In this mouse model, AAC was induced by administration with DSS. As previously reported, TNFR2 expression was up-regulated in the epithelial cells of AAC mice with or without TNFR2 expression. Furthermore, TNFR2 expression was up-regulated in the epithelial cells of AAC mice with or without TNFR2 expression. In this mouse model, AAC was induced by administration with DSS. As previously reported, TNFR2 expression was up-regulated in the epithelial cells of AAC mice with or without TNFR2 expression. Furthermore, TNFR2 expression was up-regulated in the epithelial cells of AAC mice with or without TNFR2 expression.

Results:

TNFR2 up-regulation is observed in the murine colorectal epithelial cell line, AAC, when stimulated with rIFN-γ and TNF. The expression of MLCK induces the loss of barrier function in the epithelial layer in a TNF-dependent manner. TNFR2-specific siRNA abrogates the expression of MLCK in rIFN-γ and TNF-stimulated AAC cells. The expression of NF-κB induces the loss of barrier function in the epithelial layer in a TNF-dependent manner. TNFR2-specific siRNA abrogates the expression of MLCK in rIFN-γ and TNF-stimulated AAC cells.

Conclusion:

The epithelial TNFR2 signaling in the context of IBD may be involved in epithelial permeabilization and pro-tumorigenic cytokine production that result in AAC development. These results suggest that MLCK may be a potential target for the prevention of IBD-associated tumor development in humans.

Acknowledgments

Tokyo Medical and Dental University

Department of Gastroenterology

Research Center for Medical and Dental Sciences

Albin University

Department of OB/GY

University of Tokyo

Department of Applied Biological Chemistry

This work was supported in part by Grant-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science and Technology (to TN). The Japanese Ministry of Health, Labor and Welfare (to TN), Akishin Dei Kogen Research Award (to TN), The Foundation for Advancement of International Science (to TN), Takada Science Foundation (to TN).