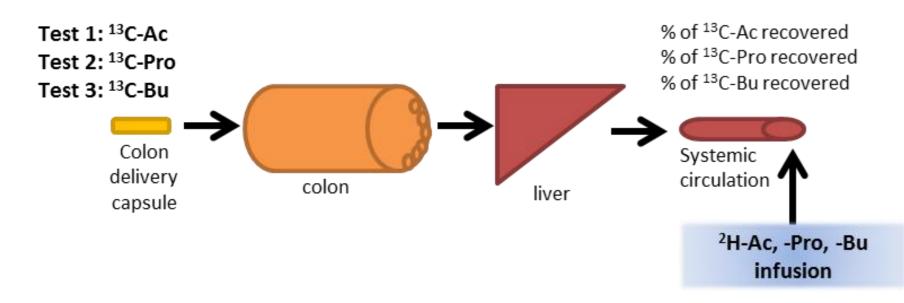
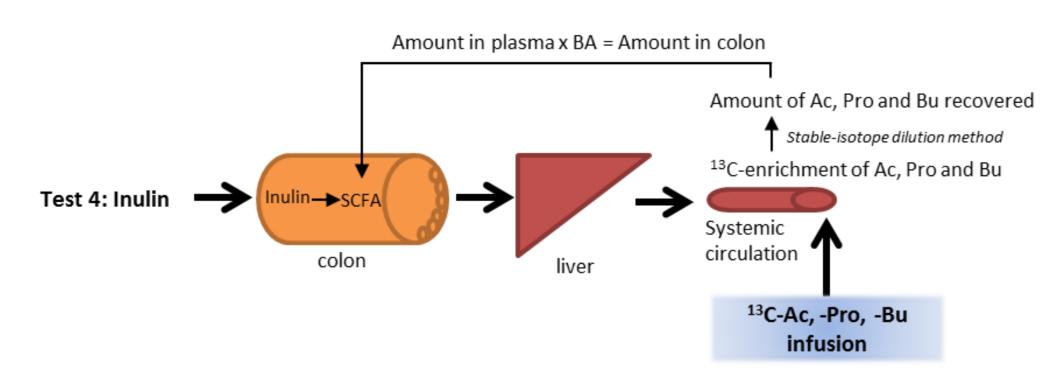


22nd United European Gastroenterology Week October 18 – 22, 2014 | Vienna, Austria

Quantification of in vivo colonic short chain fatty acid production from inulin


Eef Boets, Els Houben, Sara Gomand°, Jan Delcour°, Kristin Verbeke
Translational Research for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium; °Laboratory of Food Chemistry and Biochemistry, KU Leuven, Leuven, Belgium; Leuven Food Science and Nutrition Research Center, KU Leuven, Leuven, Belgium
Leuven, Belgium

Introduction


Short chain fatty acids (SCFA; acetate(Ac), propionate(Pro) and butyrate(Bu)) are produced during bacterial fermentation of undigested carbohydrates in the colon. In this study, we determined the bioavailability of each SCFA and applied a stable-isotope dilution method to quantify the colonic production of SCFA after consumption of inulin.

Study Design

- 12 healthy subjects (7F/5M; 26±6years)
- 3 test days to determine the bioavailablility (BA)

• 1 test day to quantify SCFA production from inulin

 Analysis of ¹³C- and ²H-enrichments of SCFA in blood samples using Gas Chromatography Combustion and Pyrolysis Isotope Ratio Mass Spectrometry

<u>Calculations</u>

• Bioavailability:

$$BA (\%) = \frac{\text{Area Under Curve (AUC) x Clearance (Cl) x 100}}{\text{Administered dose (D)}}$$

$$Cl \left(\frac{L}{L}\right) = \frac{\text{Infusion rate (i) }^{2}\text{H-SCFA}}{\text{Infusion rate (i) }^{2}\text{H-SCFA}}$$

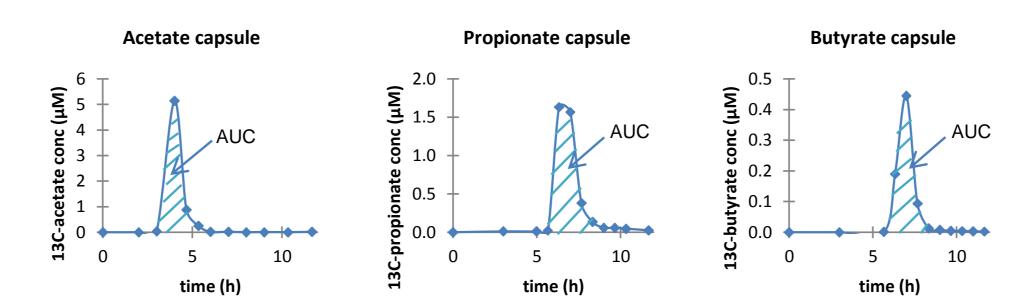


Figure 1. Example of ¹³C-Ac, -Pro and -Bu concentrations in plasma after a ¹³C-Ac, -Pro and -Bu capsule, respectively, in one subject.

SCFA production from inulin:

¹³C-enrichment of SCFA in plasma → *Total SCFA turnover* $\left(\frac{\mu mol}{kg \ x \ h}\right) = i \ x \left(\frac{Tracer ^{13}C-enrichment}{Plasma ^{13}C-enrichment} - 1\right)$ → AUC $\left(\frac{\mu mol}{kg}\right)$ → cumulative in plasma (mmol) → cumulative in colon (mmol) → mmol SCFA/ g inulin

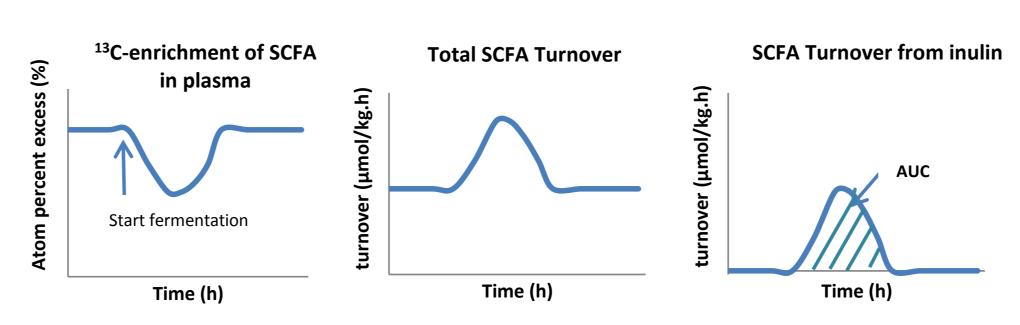


Figure 2. Principle of stable-isotope dilution.

Results

Bioavailability of Ac, Pro and Bu:

	Acetate	Propionate	Butyrate
AUC (μmol.h/L)	4.4 [3.3-6.2]	1.8 [1.4-2.0]	0.5 [0.4-0.5]
CI (L/h)	603 [430-654]	421 [369-471]	1198 [937-1427]
D (mmol)	4.8 [4.4-5.0]	3.3 [3.3-3.4]	8.8 [8.3-8.9]
BA (%)	56 [26-71]	23 [18-25]	7 [4-10]

All values are expressed as medians and interquartile ranges (n= 12).

SCFA production from inulin:

	Acetate	Propionate	Butyrate
AUC (μmol/kg)	699 [535-1070]	14 [10-23]	14 [10-15]
Cum in plasma (mmol)	43 [34-78]	0.9 [0.6-1.5]	0.8 [0.6-1.1]
Cum in colon (mmol)	100 [57-174]	5 [2-7]	11 [8-25]
mmol SCFA/ g inulin	6.7 [3.8-11.6]	0.3 [0.2-0.5]	0.7 [0.5-1.7]

All values are expressed as medians and interquartile ranges (n= 12).

Conclusion

- The BA of Ac, Pro and Bu was determined in healthy human subjects and showed large interindividual differences.
- Inulin is mainly fermented into Ac followed by Bu and Pro.
- Stable isotope technology allows to quantify *in vivo* SCFA production from carbohydrate fermentation and will facilitate the evaluation of health benefits attributed to SCFA.